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Abstract
We show that the Lorentz shear modulus of macroscopically homogeneous electronic states in
the lowest Landau level is proportional to the bulk modulus of an equivalent system of
interacting classical particles in the thermodynamic limit. Making use of this correspondence,
we calculate the Lorentz shear modulus of Laughlin’s fractional quantum Hall states at filling
factor ν = 1/m (m an odd integer) and find that it is equal to ±h̄mn/4, where n is the density
of particles and the sign depends on the direction of magnetic field.

1. Introduction

The response of many-body systems to external fields can be
universally formulated in terms of hydrodynamical equations
of motion, which follow from the local conservation laws
of the number of particles and momentum. These equations
completely describe the dynamics of the particle density n and
the particle current density j under the combined action of
external and internal (or stress) forces. The most important
ingredient of this formulation is the stress tensor Pik , which
determines the stress force density entering the momentum
conservation law: F stress

i = −∂k Pik . In general the stress tensor
for every particular state of matter is a universal functional of
the current density [1] (or, equivalently, of the deformation
tensor [2, 3]). In fact, the form of Pik [j] encodes all the
dynamical information about a given many-body state.

Unfortunately it is an extremely difficult, if not hopeless
task to determine the general form of the stress tensor as a
functional of the current. As usual the problem simplifies
in the linear response regime as the stress tensor becomes a
linear functional of the strain tensor uik = 1

2 (∂i uk + ∂kui ),
where u(r, ω) is the displacement vector field. The coefficients
of this linear functional form the rank-4 tensor of elasticity
Qi jkl(ω), which is, in general, a function of frequency.
This tensor describes a stress response to a time dependent
deformation of the system. In a macroscopically isotropic
two-dimensional (2D) system subjected to a perpendicular
magnetic field the rank-4 tensor Qi jkl contains only three

independent components and can be parametrized by three
dynamic ‘elastic moduli’ K (ω), μ(ω), and �(ω) [4–7]. The
moduli K (ω) and μ(ω) describe the response to a local
change in volume and to a local volume-preserving (shear)
deformation, respectively. Therefore they correspond to
the standard bulk and shear moduli of classical elasticity
theory [8]. The third modulus, �(ω), appears only in the
presence of the magnetic field and plays an important role in
the dynamics of 2D electrons at high magnetic field. This
modulus controls the magnitude of a stress proportional to the
rate of volume-preserving deformations, and in this respect is
similar to a viscous stress. However, the corresponding force
always acts in a direction perpendicular to the stream lines
and is purely nondissipative, like the usual Lorentz force. To
underline its nondissipative character, in [5–7] we named the
modulus �(ω) ‘Lorentz shear modulus’. The same quantity is
also known in the literature as ‘asymmetric viscosity’ [9], or
‘Hall viscosity’ [10].

The appearance of a ‘nondissipative viscosity’ in the
presence of a magnetic field is well known in plasma physics.
The calculation of the corresponding kinetic coefficient �0 =
− limω→0 �(ω) for a classical plasma can be found, for
example, in [11]. The result is

�0 = ± h̄n

2

kBT

h̄ωc
, (1)

where n is the electronic density, T is the temperature and ωc is
the cyclotron frequency (the sign is determined by the direction
of the magnetic field).
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In this paper we focus on the microscopic calculation
of �0 for an extended, macroscopically homogeneous 2D
electronic system in the quantum Hall regime, i.e. when all
the electrons reside in the lowest Landau level. For a 2D
noninteracting electron liquid in a completely filled Landau
level, this calculation was first done by Avron et al in [9].
These authors observed that the value of �0 is proportional
to a Berry curvature related to adiabatic changes of geometry,
and used this fact to explicitly calculate the modulus. The
result was �0 = ±h̄n/4,4 which, incidentally, agrees with
the classical formula (1) if one replaces the thermal kinetic
energy per particle kBT with the kinetic energy per particle of
the lowest Landau level h̄ωc/2.

In [4] one of us derived hydrodynamics equations for
quantum Hall states at fractional filling factor using a fermionic
Chern–Simons theory [12–15] at the RPA level. Within this
approximation �0 exactly coincides with the noninteracting
result of [9], as reported above, which is not surprising since
the composite fermions do not interact in RPA. In a recent
paper [7] we applied a formally exact linear response theory
to the calculation of the Lorentz shear modulus for strongly
correlated quantum Hall states at fractional filling factors
(Laughlin states). We showed that �(ω) can be expressed in
terms of a particular stress–stress correlation function which,
in the limit ω → 0, reduces to the Berry curvature expression
of Avron et al. After publication of our work [7] the problem
of calculating �0 was reconsidered by Read [10] who noticed
an error at the very end of our calculation. Making use
of the Laughlin plasma analogy [16] Read calculated the
Hall viscosity (Lorentz shear modulus) for Laughlin states at
ν = 1/m (m is an odd integer) and also for states with trial
wavefunctions in the form of conformal blocks of a conformal
field theory. For Laughlin states, Read’s result is

�0 = ± h̄nm

4
, (2)

whereas in our paper we had incorrectly obtained �0 = ± h̄n
4 .

Read’s paper is difficult and contains much more than
just the calculation of the Lorentz shear modulus. We have
found that it is possible to give a more elementary derivation
of Read’s result for filling factors ν = 1/m. The crucial step
in the derivation is the recognition that the calculation of the
Lorentz shear modulus for a macroscopically homogeneous
state of electrons in the lowest Landau level can be mapped
to the calculation of the bulk modulus of an equivalent
system of interacting classical particles. While in general
the many-body interactions in this equivalent classical system
are prohibitively complicated, they simplify dramatically for
Laughlin’s quantum Hall states, where one recovers the well-
known classical plasma analogy. This allows a simple
calculation of the Lorentz shear modulus. The quantum-
classical correspondence can also be used ‘in reverse’. Namely,
from the knowledge of the shear modulus associated with a
certain wavefunction in the lowest Landau level one can in
principle obtain the bulk modulus of the equivalent classical
system, even if the latter is very complicated.

4 Actually the original paper [9] missed a factor 2 resulting in one half the
correct value quoted in the main text.

The structure of this paper is as follows. In section 2.1 we
introduce the formal definition of the Lorentz shear modulus
and discuss its physical significance. Here we also address
the delicate question of the correct boundary conditions for
the trial many-body wavefunction to be used in the calculation
of the Berry curvature in the thermodynamic limit. The
calculation of the Lorentz shear modulus for the Laughlin
states is presented in section 2.2. In section 2.3 we generalize
our procedure to other macroscopically homogeneous states
in the lowest Landau level. In section 3 we summarize our
main results and discuss how the new value of �0 affects our
previous analysis of the collective modes of the electron liquid
in the fractional quantum Hall regime.

2. Lorentz shear modulus in a 2D magnetized
electron gas

2.1. Definitions and physical significance of the Lorentz shear
modulus

Let us consider a 2D electron gas confined to the (x, y) plane
and subjected to a perpendicular magnetic field B = B ẑ. In
the linear response regime and in the long wavelength limit the
exact stress tensor Pi j takes the following ‘elastic’ form [6, 7]

Pi j(r, ω) = −Qi jkl(ω)ukl(r, ω), (3)

where ukl = 1
2 (∂kul + ∂luk) is the strain tensor and u is

the displacement vector defined in the standard way, namely
∂t u = j/n = v is the velocity field of the electron liquid (j
is the current density). The frequency dependent coefficients
Qi jkl(ω) in the linear functional of equation (3) form the
dynamic tensor of elasticity. The general structure of this
tensor is essentially fixed by symmetry. In particular, for
a macroscopically isotropic state the rank-4 tensor Qi jkl is
completely determined by only three independent ‘elastic
moduli’

Qi jkl(ω) = K (ω)δi jδkl + μ(ω)(δikδ jl + δilδ jk − δi jδkl)

+ iω
�(ω)

2
(εikδ jl + ε jkδil + εilδ jk + ε jlδik). (4)

Inserting equation (3) into (4) we get the following
representation for the stress tensor for any isotropic state of
a 2D magnetized electron gas

Pi j = −K δi jukk − μ(2ui j − δi j ukk)

+ �(εikvk j + ε jkvki ), (5)

where vi j = −iωui j = 1
2 (∂iv j + ∂ jvi ) is the rate of change of

the strain. The first two terms in equation (5) describe the stress
arising from a local change in volume (ukk = ∇u) and from
a volume-preserving (traceless, or shear) deformation (2ui j −
δi j ukk ), respectively. Hence the corresponding coefficients
K (ω) and μ(ω) have the same meaning as the standard
bulk and shear moduli of a homogeneous elastic medium [8].
The third term in equation (5) is proportional to the rate of
change of the strain, i.e. to velocity gradients, which looks
somewhat similar to a viscous stress. However, for real � this
term is time-reversal invariant and, therefore, does not cause
dissipation. To get a more intuitive picture we consider a ‘shear

2
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Figure 1. Lorentz shear forces acting on a small rectangular element
of the electron fluid according to equation (6).

flow’ with the velocity distribution of the form v = (vx(y), 0)

(for example, two oppositely directed streamlines). In this
simple case the �-part of the stress tensor has only two nonzero
elements,

P�
xx = −P�

yy = �∂yvx(y). (6)

This distribution of stresses corresponds to forces, exerted on
the faces of an infinitesimal rectangle, which squeeze or repel
(depending on the sign of �) two opposite stream lines. The
important point is that these forces are always perpendicular
to the local direction of the streamlines, as shown in figure 1.
Hence the effect of the third term in equation (5) is analogous
to that of the Lorentz (Ampere) force acting between two
currents, and causes no dissipation. Having in mind this
physical picture we prefer to call the coefficient �(ω) the
‘Lorentz shear modulus’ in contrast to more formal terms such
as ‘asymmetric viscosity’ [9] or ‘Hall viscosity’ [10].

2.2. Linear response approach to the microscopic calculation
of the Lorentz shear modulus

Let us now address the problem of the microscopic calculation
of the Lorentz shear modulus in the limit of zero frequency.
In our recent paper [7] we expressed �0 ≡ − limω→0 �(ω) in
terms of the stress–stress correlation function in the following
manner:

�0 = − lim
ω→0

lim
q→0

1

ω
Im〈〈P̂xx ; P̂xy〉〉q,ω. (7)

The stress tensor operator P̂i j is formally defined as follows
(see, e. g. [3])

P̂i j (r, t) = −2

[
δ Ĥ [gi j]
δgi j(r, t)

]
gi j =δi j

, (8)

where Ĥ [gi j] is the Hamiltonian of the system in a ‘deformed’
space with metric gi j(r, t). The subscript q in equation (7)
means that we are actually considering the correlation function
for the Fourier component of P̂i j (r, t) at wavevector q, where
q tends to zero before ω. It is convenient to parametrize the
metric tensor as follows [9, 17, 7]

gi j = J

τ2

(
1 τ1

τ1 |τ |2
)

, (9)

Figure 2. Deformation of the Euclidean plane corresponding to the
metric of equation (9). The square is transformed into a
parallelogram. The slope of the oblique side coincides with the
direction of τ in the complex plane. We have chosen J = 1,
τ1 = τ2 < 1.

where τ = τ1 + iτ2. A picture of the deformation
of the Euclidean plane corresponding to this choice of
metrics is shown in figure 2. Making use of the Lehmann
representation [18] for the stress–stress correlation function
and performing the standard manipulations one can transform
equation (7) to the following Berry curvature form

�0 = 2h̄

L2
Im

〈
∂	0

∂τ1

∣∣∣∣ ∂	0

∂τ2

〉
(10)

where L2 is the area of the system, 	0 is the ground state
wavefunction in a homogeneously deformed space with a
constant metric of equation (9), and the τ -derivatives are
calculated at τ1 = 0, τ2 = 1, and J = 1.

Equation (10) was first derived in [9] from the adiabatic
response theory. Our linear response derivation shows that
there is a delicate point in the identification of the Berry
curvature (the right-hand side in equation (10)) with the
physical Lorentz shear modulus. Physically such a modulus
describes a stress response to a deformation whose wavelength
is much larger than any internal scale of the system (e.g. the
interparticle distance, the correlation length, etc), but still
much smaller than the size of the sample L. At the level
of the linear response formula, equation (7), this means that
the thermodynamic limit should be performed before the limit
q → 0. This guarantees that the calculated elastic modulus
does not depend on the geometry of the sample (provided
the sample is sufficiently large), i.e. it is a bulk property of
the ‘material’, as it should. However, in the derivation of
the Berry curvature formula the order of limits was explicitly
interchanged. The right-hand side of equation (10) contains
the ground state wavefunction of a finite system with a finite
number of particles N . Physically this describes the response
to a homogeneous deformation of the whole sample which in
general may depend on the sample geometry5. Nonetheless it

5 A similar situation arises in the standard textbook calculation of the plasma
frequency using a finite slab of jellium (see, for example [23]). When the
electrons are uniformly displaced relative to the slab, a simple calculation
of the restoring force yields the plasma frequency ωp = √

4πne2/m, which
coincides with the q → 0 limit of the bulk plasmon mode. If, however, one
does the same calculation using a finite jellium of spherical shape, one gets a
different result ω′

p = √
4πne2/3m, which does not coincide with the q → 0

limit of the bulk plasmon. The essential point is that the bulk plasmon is a
plane wave excitation, which in the q → 0 limit (q � 1/L) goes smoothly
over to the slab model, not to the spherical jellium model.

3
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is still possible to obtain the correct physical result even with
the interchanged order of limits. The key is to use boundary
conditions for the wavefunction 	0, which are compatible with
the symmetry of the physical plane wave perturbation (the
deformation in our particular case). For, in this way we ensure
that the q → 0 limit of the deformed state goes smoothly
to the homogeneous deformation of the ground state in the
same geometry. In practice this simply means that the correct
result is guaranteed if one studies a sample of rectangular
shape, which satisfies periodic boundary conditions either in
two directions (torus) or in one direction (cylinder). On the
other hand a sample of circular shape would not be compatible
with the symmetry of the plane wave, because the presence
of a finite wavevector, no matter how small, always breaks
rotational symmetry6.

The choice of the torus geometry in the present context
may also cause some technical problems which require special
care. On a torus the ground state for gapped quantum Hall
states is degenerate. This nicely demonstrates the topological
nature of these states, but at the same time introduces an
artificial degeneracy which is not present in any real physical
sample. Clearly, this degeneracy should not affect the physical
elastic moduli. To guarantee that this is indeed the case we put
our system of N electrons on a cylinder with a circumference
L in such a way that it occupies the area L2 = NS(2π�2),
where NS = N/ν is the number of flux quanta (one flux
quantum = hc/e), and � = √

h̄c/eB is the magnetic
length. The thermodynamic limit which we take at the end
of calculations corresponds to N → ∞ at fixed filling factor
ν = N/NS.

For the Hamiltonian defined on a space with the metric
of equation (9) the N-body wavefunction which lies entirely
in the lowest Landau level and satisfies periodic boundary
conditions in the x-direction can be written in the following
general form

	0(r1, . . . , rN ) = Z− 1
2 (τ1, τ2) f (η1, . . . , ηN )

N∏
i=1

e
i

2�2 τ y2
i

(11)
where Z− 1

2 is the normalization factor, η j ≡ exp(2π i x j +τ y j

L ),
and f (η1, . . . , ηN ) is an analytic function of its arguments. A
crucial observation is that 	0, equation (11), apart from the
normalization factor, is an analytic function of the complex
variable τ . This enables us to express the Berry curvature
solely in terms of the normalization factor [17, 7]:

2 Im

〈
∂	0

∂τ1

∣∣∣∣ ∂	0

∂τ2

〉
= 1

2

(
∂2

∂τ 2
1

+ ∂2

∂τ 2
2

)
ln Z . (12)

Hence the problem of microscopic calculation of the Lorentz
shear modulus reduces to the calculation of the normalization
factor. For our particular choice of a quantum Hall system
on a cylinder the problem simplifies even further since the
normalization factor depends only on τ2. Indeed, by shifting

6 In fact, one can show that the original Laughlin wavefunction for a ‘circular
droplet’ [16], when used in equation (10), yields a result that is vastly
different from the one obtained from Laughlin states on a torus [24] or on a
cylinder [19].

all the x-variables, (x j + τ1 y j) → x j , and rescaling all y-
variables, τ2y j → y j , we reduce the normalization integral to
the following form

Z(τ2) = τ−N
2

N∏
k=1

∫ L

0
dxk

∫ ∞

−∞
dyk

× ∣∣ f
(
e2π iz1/L , . . . , e2π izN /L

)∣∣2
e
− ∑N

j=1

y2
j

τ2�2 , (13)

where zk = xk + iyk . Hence the final formula for the Lorentz
shear modulus in the state 	0 takes the form

�0 = h̄

2L2

[
∂2

∂τ 2
2

ln Z(τ2)

]
τ2=1

, (14)

with Z(τ2) defined after equation (13). In the next subsections
we calculate this integral using the Laughlin classical plasma
analogy.

2.3. Calculation of the Lorentz shear modulus for Laughlin
states

The cylindrical generalization of the Laughlin trial function
at ν = 1/m contains the analytic factor f of the following
form [19]

f (z1, . . . , zN ) =
∏
j<k

(
e2π iz j /L − e2π izk/L

)m
. (15)

Inserting this equation into equation (13) we represent the
normalization integral in a form of a partition function of N
classical particles,

Z(τ2) = τ−N
2

N∏
k=1

∫ L

0
dxk

∫ ∞

−∞
dyke− 1

ν
W (r1,...,rN ), (16)

at the ‘temperature’ ν = 1/m and with the following energy

W (r1, . . . , rN ) = 2π N

τ2 L2

N∑
j=1

y2
j + 1

2

∑
j �=k

Ṽ (r j , rk), (17)

where we used the identity 1/m = N/NS ≡ 2π N�2/L2, and
introduced the notation

Ṽ (r, r′) = − ln
∣∣e2π iz j /L − e2π izk/L

∣∣2
. (18)

The first term in equation (17) has a clear physical
interpretation; it is the Coulomb potential of a homogeneously
distributed (on the cylindrical surface) positive charge with
density ρ = N/(τ2 L2). Note that after the rescaling of the y-
coordinate the size of the system along the axis of the cylinder
becomes L y = τ2L; the classical system with the probability
distribution ∼ exp[−mW ({r j})] occupies the region with 0 <

y < τ2 L. Hence the quantity N/(τ2 L2) entering the first term
in equation (17) exactly coincides with the physical density
of this classical system, in perfect agreement with the idea
of the Laughlin classical plasma analogy [16]. However,
at variance with the original circularly symmetric Laughlin
wavefunction, the second term in equation (17) does not look
like the interaction energy of a Coulomb plasma. To show

4
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that this is nonetheless the case, we express the two-point
‘potential’ Ṽ (r, r′), equation (18), in terms of the physical
Coulomb interaction V (r − r′) between two-point particles on
a cylinder, (see appendix)

V (r − r′) = −2π
|y − y ′|

L
− ln

∣∣∣1 − e2π i x−x ′+i|y−y′ |
L

∣∣∣2
. (19)

The identity of equation (A.4) allows us to relate Ṽ (r, r′) to
V (r − r′)

Ṽ (r, r′) = 2π
y + y ′

L
+ V (r − r′). (20)

Substituting this equation into equation (17) we transform the
energy W ({r j }) to the following form

W ({r j }) = −τ2
π

2
(N −1)2 + 2π N

τ2 L2

N∑
j=1

ỹ2
j +

1

2

∑
j �=k

V (r̃ j − r̃k),

(21)
where x̃k = xk and ỹk = yk + 1

2τ2 L(1 − 1
N ). Hence the main

effect of the difference between Ṽ (r, r′) and V (r − r′) is a
shift of the y-coordinate by a half of the system size ∼τ2L/2.
In what follows we remove this shift by moving the origin to
the center of the slab: ỹk → yk .

Thus the energy W ({r j }) exactly corresponds to the
energy of a system of N classical charges on an infinite
homogeneously charged cylinder. To proceed further in the
calculation of the partition function of this system we separate
a ‘neutralizing’ part of the background with density

nb(r) = N

τ2 L2
θ

(
τ2

L

2
− |y|

)
, (22)

and total charge
∫

drnb(r) = N . The next step is to separate
the energy of interaction of the particles with nb(r) from the
total energy of equation (21). Using equations (A.5) and
(A.6) of the appendix we find the following representation for
W ({r j })

W = −τ2π

(
2N2

3
− N + 1

2

)
+ ENJ({r j})+ ES({r j }). (23)

The second term, ENJ({r j }), in this equation is the energy of a
neutral slab of jellium,

ENJ = 1

2

∫
dr dr′V (r − r′)[�ρ̂(r)�ρ̂(r′) − δ(r − r′)ρ̂(r)]

(24)
where ρ̂(r) is the microscopic particle density, and �ρ̂(r) is
the microscopic charge density of jellium:

ρ̂(r) =
N∑

j=1

δ(r − r j ), �ρ̂(r) = ρ̂(r) − nb(r). (25)

The third term in equation (23) corresponds to the surface
(edge) contribution

ES = 2π N

τ2 L2

N∑
j=1

(
|y j | − τ2 L

2

)2

θ

(
|y j | − τ2L

2

)
, (26)

Figure 3. Schematic sketch of the electron density as a function of y.
The two edge regions, whose width is proportional to the mean
interparticle distance � ∼ L√

N
, are highlighted. The actual structure

of the edge is more complicated [20], and is not shown here.

which is the potential energy of particles outside the
‘neutralizing’ part of the background (see figure 3).

Equation (23) is extremely useful for the analysis of the
relevant limit N → ∞ of the partition function. It is
physically obvious that the contribution, equation (26), should
be irrelevant in the thermodynamic limit as it involves a small
fraction of particles in the edge region. Indeed, from figure 3
we see that the contribution to ES comes from a region whose
width is of the order of the mean interparticle distance � ∼

1√
n

= L√
N

(since it is proportional to the magnetic length, we
use the same notation). Then a simple, order of magnitude
estimate of ES is

ES ∼ N

L2
(L�n)�2 ∼ √

N (27)

where L�n ∼ √
N is the average number of particles in the

edge region. This shows that in the limit N → ∞ES grows
as

√
N and is negligible in comparison with the first and the

second terms in equation (23), which are proportional to N2

and N respectively. Inserting the energy of equation (23)
into (16) and neglecting ES, we rewrite the normalization
integral as follows

Z(τ2) = L2N e
mτ2π

(
2N2

3 −N+ 1
2

)
ZNJ

Z0
, (28)

where ZNJ = 〈exp[−m ENJ({r j})]〉 is the partition function of
the slab of jellium, and Z0 = (τ2 L2)N is the partition function
of N noninteracting particles in the slab. Hence equation (28)
can be equivalently represented in the form

Z(τ2) = L2N e
mτ2π

(
2N2

3 −N+ 1
2

)
e−mFint(τ2), (29)

where Fint = − 1
m ln(ZNJ/Z0) is the interaction free energy

of the classical jellium model. The final step is to substitute
equation (29) into the expression of equation (14) for the
Lorentz shear modulus. The first, non-extensive exponent
(∼N2) in equation (29) does not contribute to �0 since it is
linear in τ2. Therefore equation (14) reduces to the form

�0 = − h̄m

2

[
∂2

∂τ 2
2

τ2
Fint(τ2)

τ2 L2

]
τ2=1

. (30)

Now we can easily perform the thermodynamic limit. In this
limit, the free energy density of a neutral jellium depends only

5
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on the density of particles, which is equal to the background
charge density ρ of the jellium FNJ/(τ2L2) = fNJ(ρ), where
ρ = n/τ2 and n = N/L2 is the density of electrons in the
original quantum Hall system. Thus in the thermodynamic
limit equation (30) simplifies as follows

�0 = − h̄m

2

[
∂2

∂τ 2
2

τ2 fint

(
n

τ2

)]
τ2=1

, (31)

where fint(ρ) is the interaction free energy density of
a 2D classical jellium model with logarithmic interaction
between the particles. The key observation is that τ2 enters
equation (31) as an effective volume (the area in 2D). Hence
the second derivative of the energy with respect to τ2 in
equation (31) is nothing but the isothermal bulk modulus:

�0 = h̄m

2

[
∂

∂τ2
Pint

(
n

τ2

)]
τ2=1

= − h̄m

2
Kint(n), (32)

where Pint(ρ) and Kint(ρ) are the interaction contributions to
the pressure and bulk modulus, respectively. Equation (32)
is the main result of the present paper. It shows that the
calculation of the Lorentz shear modulus in a quantum Hall
system reduces to the calculation of the bulk modulus of an
equivalent classical system. In section 2.4 we will demonstrate
that this result holds more generally for any macroscopically
homogeneous quantum Hall state.

For the Laughlin states considered in this subsection we
need the bulk modulus Kint(ρ) of a 2D Coulomb plasma with
logarithmic interaction, which can be calculated exactly [21].
The easiest way is to use the virial representation for the
interaction pressure

Pint = − 1

4S

∫
dr dr′(r−r′)

∂V (r − r′)
∂(r − r′)

ρ(r)ρ(r′)[g(r, r′)−1]
(33)

where S is the area of the system and g(r, r′) is the
pair correlation function. Inserting V (r) = − ln |r|2 into
equation (33) and using the sum rule∫

dr′ρ(r′)[g(r, r′) − 1] = −1,

we obtain the interaction pressure and the corresponding bulk
modulus in the form

Pint(ρ) = Kint(ρ) = − 1
2ρ.

This implies the following final result for the Lorenz shear
modulus of the Laughlin quantum Hall liquids

�0 = h̄nm

4
= π h̄

2�2
, (34)

which is in agreement with the recent result of Read [10]. In
the case of a full Landau level (m = 1) it recovers the formula
for the ‘asymmetric viscosity’ obtained by Avron et al in [9].
It is interesting to note a surprising feature of equation (34):
because the density n is proportional to 1/m the Lorentz shear
modulus for Laughlin states does not depend on the filling
factor.

2.4. Generalization to arbitrary macroscopically
homogeneous quantum Hall states

The result of equation (32) can be straightforwardly
generalized to other macroscopically homogeneous states in
the lowest Landau level. These are states in which the
macroscopic particle density is uniform. For example a
Wigner crystal, while microscopically inhomogeneous, can be
considered homogeneous on a macroscopic scale; the average
density is uniform. In fact, most states of interest in condensed
matter physics have this property.

In general the normalization integral for any wavefunction
	0({r j }) that satisfies cylindrical boundary conditions in
the lowest Landau level is representable in the form of
equation (16), where

W ({r j }) = 2π N

τ2 L2

N∑
j=1

y2
j + Ũ({r j }), (35)

and Ũ ({r j}) = −ν ln | f ({r j})|2 is the interaction energy of
the equivalent classical system (here f ({r j}) is the analytic
factor in the many-body wavefunction, equation (11)). The
interpretation of the first term in equation (35) is exactly the
same as for the Laughlin states: it is the energy of classical
particles in the electrostatic field of a homogeneous charged
background with the density ρ = N/(τ2 L2). Depending on
the form of the wavefunction 	0, the second term can contain
both two-particle and multi-particle interactions. In general the
form of these interactions is extremely complicated; they are
neither translationally nor rotationally invariant. However, if
the physical density distribution of the quantum state under
consideration is macroscopically homogeneous with a mean
density n̄ = N/L2, then the interaction energy Ũ({r j}) of the
equivalent classical system must contain a long-range Coulomb
contribution of the form

∑
j<k Ṽ (r j , rk). The presence of this

pairwise logarithmic interaction is mandatory to compensate
for the background potential and protect the macroscopic
homogeneity of the classical gas. Hence for macroscopically
homogeneous states in the lowest Landau level the energy of
the equivalent classical plasma should take the form

W ({r1}) = 2π N

τ2 L2

N∑
j=1

y2
j +

∑
j<k

Ṽ (r j , rk) + Ũsr({r j}), (36)

where the last term Ũsr({r j }) can contain only short-range
(possibly multi-particle, anisotropic, etc) interactions. Since
short-range interactions do not spoil the extensive character
of the free energy, the chain of arguments that led us from
equation (16) to (31) remains valid for any macroscopically
homogeneous quantum Hall state. Therefore the Lorentz shear
modulus for such states can be calculated as follows

�0 = h̄

2ν

[
∂

∂τ2
Pint

(
n

τ2

)]
τ2=1

= − h̄

2ν
Kint(n), (37)

where Pint(ρ) and Kint(ρ) are the interaction pressure and
the isothermal bulk modulus of the corresponding classical
plasma.
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As a simple example consider the wavefunction proposed
by Wexler and Ciftja [22] for the nematic liquid crystal state at
ν = 1/3. The cylindrical generalization of this wavefunction
contains an analytic factor f the form

f (z1, . . . , zN ) =
∏
j<k

(
e2π iz j /L − e2π izk/L

)
× (

e2π i(z j −α/2)/L − e2π i(zk+α/2)/L
)

× (
e2π i(z j +α/2)/L − e2π i(zk−α/2)/L

)
, (38)

where α is a complex number, which we set equal to ia,
with a real and positive. With this choice the system remains
invariant under rotations about the axis of the cylinder. The
parameter a is the microscopic distance (of the order of the
magnetic length) by which two of the three zeros of the ν =
1/3 Laughlin wavefunction are displaced from their ‘regular’
position on top of the particle. The Laughlin wavefunction is
recovered by setting a = 0. It is now straightforward to verify
that the classical system that is equivalent to this wavefunction
contains, in addition to the interactions of equation (17), a
two-body short-range interaction of the form (in the physically
relevant 2D regime, |zi − z j | � L)

Ũsr({r j}) = −ν

2

∑
i �= j

ln

∣∣∣∣1 + a2

(zi − z j )2

∣∣∣∣
2

. (39)

This interaction is strongly anisotropic and exhibits logarith-
mic singularities at interparticle distance 0 (independent of di-
rection) and a (along the y axis). It is clearly very difficult to
calculate the bulk modulus of this system from classical statis-
tical mechanics. However, if we could, by some independent
method, calculate the Lorentz shear modulus of the wavefunc-
tion (38), then the problem would be solved.

3. Conclusion

In this paper we have shown that the calculation of the Lorentz
shear modulus in a macroscopically homogeneous electronic
system in the lowest Landau level can be mapped to the
calculation of the bulk modulus of an equivalent classical
system. Application of this approach to Laughlin’s fractional
quantum Hall states gives a value of the modulus independent
of filling factor, in agreement with the result of [10]. We
have also suggested that the application of this mapping
to non-Laughlin states in the lowest Landau level could
reveal interesting connections between the elastic properties of
quantum and classical statistical systems.
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Appendix. Electrostatics on a cylinder

In this appendix we calculate a few important ingredients of a
classical neutral jellium model on a cylinder.

The interaction potential V (r − r′) of two-point unit
charges living on a cylindrical surface is a periodic solution
of a 2D Poisson equation

∇2V (x, y) = −4πδ(x − x ′ + nL)δ(y − y ′),

V (x + L, y) = V (x, y),
(A.1)

where L is the circumference of the cylinder and n is an
integer number. This equation is readily solved by the Fourier
transformation. The result takes the following form

V (r − r′) = −2π
|y − y ′|

L
− ln

∣∣∣1 − e2π i x−x ′+i|y−y′ |
L

∣∣∣2
. (A.2)

It is easy to see that this potential has correct 1D and 2D
asymptotic forms

V (r − r′) =
⎧⎨
⎩−2π

L
|y − y ′|, |y − y ′|  L

− ln |r − r′|2, |r − r′| � L.
(A.3)

It is also straightforward to check the following useful
representation for the potential V (r − r′)

V (r − r′) = −2π
y + y ′

L
− ln

∣∣∣e2π iz/L − e2π iz′/L
∣∣∣2

. (A.4)

Now we find the interaction potential Upb(r) of a
negatively charged particle with a positive background charge
density nb(r) that is homogeneously distributed on a cylinder
and occupies the region − Lτ2

2 < y < Lτ2
2

nb(r) = ρθ

(
Lτ2

2
− |y|

)
,

where ρ = N
L Lτ2

and N is the total charge of the background.
The potential Upb(r) is given by the following integral

Upb(r) = −
∫

dr′V (r − r′)nb(r′) = −π
N

2

Lτ2

L

− 2πρy2 + 2πρ

(
|y| − Lτ2

2

)2

θ

(
|y| − Lτ2

2

)
. (A.5)

Similarly one calculates the background–background
interaction energy

Wbb = 1

2

∫
dr dr′V (r − r′)nb(r′)nb(r) = π

N2

3

Lτ2

L
. (A.6)
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